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Mathematical data-mining techniques to generate a repre-

sentative set of protein fragments are described. Protein

fragments are used as search models within the macromole-

cular phasing method of molecular replacement to attempt to

phase protein data without a homologous model correctly.

Preliminary investigations using these fragments indicate that

molecular replacement with AMoRe is not sensitive enough to

phase myoglobin or insulin data suf®ciently for successful

re®nement. The results suggest that more advanced molecular

replacement techniques may be successful, though at present

these are not computationally practical.
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1. Introduction

As more model structures become available though protein

crystallography and nuclear magnetic resonance (NMR),

there have been a number of projects to generate a classi®-

cation of protein structure [CATH (Orengo et al., 1997); DALI

(Holm & Sander, 1992, 1993, 1995); SCOP (Murzin et al.,

1995)]. This is important so as to move forward from the

presentation of raw data to a greater understanding of protein

structure and function. Classi®cation has so far concentrated

on analysing the domain structure of proteins to produce a

hierarchy of structure de®nition (Orengo et al., 1997; Sowd-

hamini et al., 1996). However, it can be dif®cult to de®ne what

fragment of structure makes up a domain (Holm & Sander,

1996; Sowdhamini et al., 1996; Sali & Blundell, 1990; Alex-

androv & Go, 1992; Vriend & Sander, 1991; Fischer et al., 1992;

Grindley et al., 1993; Sowdhamini et al., 1996; Mizuguchi & Go,

1996; Ru®no & Blundell, 1994; Boutonnet et al., 1995) as it is

based on the human interpretation of protein structure. From

these domain de®nitions of protein structure, it has been

proposed that the fold space is ®nite and therefore it is

reasonable to assume that a representative set of protein

fragments can be used as molecular-replacement (MR)

models. A number of studies have approached this problem,

but unfortunately the MR is very sensitive to dissimilarity

between the model and target data.

The aim of the approach presented here is to generate a

representative set of protein folds using mathematical targets

to de®ne these. This allows any de®nition to be predictable

and reproducible even if it does not conform to current

expectations. Since all parts of the calculation are determi-

nistic, the representative set of protein folds can be repro-

duced in a trivial way. Finally, these recurring folds are used as

molecular-replacement search models to determine whether

such generic information can be used to provide any phase

information.
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1.1. Data mining

It is dif®cult to ®nd a de®nition of data mining, as it is

de®ned differently in different contexts. In this paper, the term

is used to describe the extraction of information from data

using targets de®ned only by mathematical descriptions of

correlation, occurrence and deviation. Thus, any result of the

data mining is only a mathematical construct of the data. This

means that the use of templates to search a database is not

data mining, as a template is a pre-de®ned target which must

bias any subsequent conclusions. There is also a problem that

the original data may be skewed; for example, fold analysis of

the whole Protein Data Bank would indicate that the most

common folding pattern in proteins is known as lysozyme,

owing to the many examples of this structure.

There are problems associated with the use of data mining.

It is necessary to re-cast the analysis in a way that does not

require knowledge of the data; also, noise can swamp any

useful information. The results also do not provide any

explanation of the presence of a feature, though this does not

matter when using the results for MR.

1.2. Data degeneracy

The Protein Data Bank contains signi®cant amounts of

structural degeneracy. This occurs because of multiple

deposition of proteins by different scienti®c groups, species

variants and studies of structure and function by site-directed

mutagenesis. There is also structural similarity within single

proteins and occasionally between parts of different structures

such as the lysozyme±immunoglobulin complex and deposi-

tions of the single molecules of lysozyme and immunoglobulin.

The problem is to decide where to draw the line between

information that is to be discarded (homologous domains)

because it is known to exist and detail that is to be determined

by this analysis. It is unfortunate that this process requires that

we apply some knowledge of protein structure, but the use of

sequence alignment and mathematical fragmentation removes

the human interpretation from this.

2. Methods

The process to generate the fragments of protein structure for

MR involves a number of steps. Firstly, it is necessary to select

a representative set of data which will not skew any attempt at

data analysis. Secondly, this selection of proteins is cut into

fragments using a mathematical description to avoid recurrent

structure. Next, the selection of protein fragments are opti-

mally aligned using alignment length as a target for optimi-

zation and ®nally this square symmetric matrix of alignment

lengths is analysed numerically for recurrent fold features.

Although this process requires no human intervention, only

the last stage, which involves studying data in¯ections, can be

considered data mining.

2.1. Data selection

The program PDBSELECT was used for the initial selec-

tion of proteins (Old®eld, unpublished program). The results

presented here pertain to the PDB from January 1999

(Bernstein et al., 1977), which contains 11 208 protein struc-

tures.

NMR structures were not used, as they are determined

using a different experimental target from that used to solve

protein structures by crystallography and thus errors have a

different distribution and meaning. In the former case

experimental errors are de®ned on the basis of inconsistencies

between measured atomic interactions (NOEs) and equiva-

lent interactions within a model and in the latter case the

difference between model structure factors and measured

structure factors as well as geometry deviations. Since more

proteins within the Protein Data Bank have been solved by

crystallography, these represent the largest consistent set.

Proteins solved before 1983 were rejected, as geometry

restraints were not generally used within re®nement before

this date. DNA and RNA structures are rejected if they

contain no protein part. In fact, proteins with less than ten C�

atoms were rejected from the analysis, as these could never

align with another protein with more than ten C� atoms.

Structures are also rejected if any of the residues have names

UNK or just C� atoms, as these may be incomplete structures.

The next group to be deselected were geometric outliers.

These are proteins with systematic errors that do not conform

to expectation with respect to some geometrical property

calculated from the coordinates. It would be more sensible to

de®ne the property based on the original data, but this is

generally not available within the PDB. Geometric outliers are

determined using the a Ramachandran energy surface

described by Ramachandran & Sasisekharan (1969), calcu-

lated with CHARMm 22 (Brooks et al., 1983), as well as

distributions and standard deviations of torsion angles, C�

geometries, packing density and solvent analysis. Data reso-

lution is used as a measure of the statistical error within the

coordinates, owing to experimental limitations such as crystal

quality. A limit of 2.5 AÊ is used and PDB structures that have a

resolution ®eld greater than this or no resolution information

are rejected.

Finally, all proteins that satisfy the previous criteria were

aligned by sequence. Where proteins were more than 80%

identical by sequence (exact residue homology) only a single

structure was retained. The structure with the higher resolu-

tion was retained unless ambiguous, in which case the struc-

ture with the better geometric criteria was selected. If still

ambiguous then the protein with the latest submission date

was selected.

The list of 2239 proteins generated using this rejection

method contains protein structures solved by macromolecular

crystallography to a resolution of 2.5 AÊ with good geometry

and represents a non-homologous set.

2.2. Structure fragmentation

The proteins were fragmented into major structurally

distinct units and generally, though not exclusively, this was

based on the domain structure. This also removes a major part

the non-transitive nature of the protein data found in structure



complexes. An example of this non-transitive problem occurs

between the three structures lysozyme, immunoglobulin and

the complex of immunglobulin and lysozyme. The complex

aligns with both lysozyme and immunoglobulin, but lysozyme

does not align with immunoglobulin. These three molecules

therefore form an inconsistent triangle of structure alignment.

Fragmentation of the proteins was carried out by analysis of

the two-dimensional ®nite difference matrix of the C� distance

matrix. The C� distance matrix contains lines of discontinuity

where the protein has a packing edge. To make this effect

easier to analyse, the ®nite difference matrix was generated to

create lines of peaks (Figs. 1 and 2). A packing edge in a

protein can therefore be de®ned where

Dij � jMij ÿMi�j�1� �M�i�1��j�1� ÿM�i�1�jj for i; j � 1; �N ÿ 1�P
i�1;�Nÿ1�

Dij � a� 3:8� Nb for j � 1; �N ÿ 1�;

where [M] is the C� distance matrix, [D] is the two-

dimensional ®nite difference matrix and Dij is an element of

the matrix and N is the number of C� atoms in the protein. 3.8

is the mean separation between two consecutive C� atoms in a

protein. a and b are coef®cients that de®ne the sensitivity of

edge ®nding, where a de®nes the sensitivity and b the slope for

protein size.

A number of parameters have been used, though the results

presented here are for a = 2.2 and a b of unity, though better

results have been obtained recently where b 6� 1.0.

Separate ®les were generated for each fragment part where

a packing edge was found, as long as the different fragments

had different sequence. This analysis was carried out with the

program SQUID (Old®eld, 1992) using the list of proteins

generated from the program PDBSELECT and resulted in a

set of coordinates used for the alignment analysis. A copy of

the water structure and any HETAM were also written with

each of the structure fragments though not used in the analysis

of protein features.

2.3. Structure alignment

The optimal alignment of proteins has been described by a

number of authors (Taylor & Orengo, 1989; Holm & Sander,

1993; Mizuguchi & Go, 1995) and these involve using motif

(helix/strand) alignment or C� distance matrices. The use of

alignment by vectors had been tried previously using an

algorithm within the program SQUID, but was dif®cult to

analyse owing to dif®culty in using the number of equivalent

structural elements in subsequent analysis. The optimal

alignment of two proteins using atom positions used here is

theoretically simple to describe; one only need to try aligning

every part of one protein with every part of another protein.

Unfortunately, this results in computational times that are

large.

A program CAMINE (Old®eld, unpublished program) was

written to carry out optimal structure alignment. This program

carries out optimal alignment of the C� atoms of a pair of

protein structures and takes approximately 0.1 s to ®nd all the

possible ways of aligning a pair of proteins above a threshold

length of alignment. The program is designed to use a user-

de®ned RMSD and maximize the length of alignment to give

the largest set of C� atoms that align. The algorithm trims back

any deviating sections of protein at the end of superposed

structure, so the returned RMSD is not necessarily equal to
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Figure 1
The C� distance matrix for the protein insulin (3ins). The matrix is
contoured at 10 (blue), 15 (green), 20 (yellow), 25 (cyan) and 30 AÊ

(purple). The x and y ordinates are for the residue order in the protein
and only the sequence position for the C-termini of each chain are
labelled.

Figure 2
The two-dimensional ®nite difference matrix of Fig. 1 contoured at 10
(green) and 20 AÊ (blue).
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the threshold value provided, but can be smaller. The program

will also return multiple solutions to structure alignment; for

example, myoglobin can be aligned with haemoglobin in four

different ways and therefore the program actually produces

four results. Since multiple alignment solutions could not be

handled in a simple way in this analysis, the longest alignment

of residues was taken as the only solution. The result of the

alignment is a square symmetric matrix of alignments for all

fragments with all other fragments.

A database was generated for each protein fragment that

contains the coordinates of all fragments that aligns with this

protein fragment. Some databases were small and contain two

aligned fragments and some databases were large, containing

more than 1000 members. Since the matrix of results de®nes

only the length of alignment and not position, each database

may contain information on multiple folds or no consistent

fold information. It is therefore necessary to analyse each

database to determine a consistent set of atom positions that

occurs with a signi®cant frequency.

For each of the databases, the set of aligned coordinates was

analysed to ®nd the longest common feature that occurs in the

most fragments. A program ANAFRAG (Old®eld, unpub-

lished program) reads in all the aligned coordinates and

searches for the data in¯ections as a function of length of

alignment and number of superposed structure motifs. An

in¯ection (a rapid change in a target value) occurs as more C�

atoms are added to the common feature until the number of

fragments within that feature suddenly reduces. The features

of interest have a length just smaller than this in¯ection point.

Each feature is written as a multiple superposed set of co-

ordinates and these represent the information used for the

molecular replacement.

2.4. Molecular replacement

The aim of the molecular-replacement work carried out to

date is to determine what is possible with this type of analysis.

Firstly, what size of fragment of protein structure can be used

to obtain an MR signal that can be correctly identi®ed? Since

there are a large number of results here, it is possible to

identify small signals from the MR results. Secondly, what is

the best type of model coordinates to use within MR? This

could be a single average structure or multiple overlaid

coordinates, C� atoms or polyalanine. Finally, what is the best

metric over the large number of calculations that give the best

signal-to-noise ratio? It is necessary to de®ne the number of

answers that are correctly identi®ed, the number of correct

answers not identi®ed (false negatives), the number of wrong

answers that are incorrectly signalled as correct answers (false

positives) and the number of results that are correctly de®ned

as wrong. A method of highlighting the correctness of solution

needs to minimize the false negatives and false positives. To

date, only the program AMoRe (Navaza, 1994) has been used,

as this is the quickest though certainly not the most sensitive

program.

The program AMoRe was used to carry out molecular

replacement between the structural features found by data

mining and the 2.0 AÊ data of porcine myoglobin (Smerdon et

al., 1990) and porcine insulin (Whittingham et al., 1995). The

resolution range used was 3±12 AÊ , though other ranges were

tried with no obvious improvement in the results. C-shell

scripts were written so that for each structural feature a cross-

rotation function was performed followed by a translation

function and ®nally a rigid-body re®nement. The best 20

solutions were taken at each stage in the molecular replace-

ment. The result of this analysis was 20 molecular-replacement

solutions for each structural feature. That is, 20 solutions from

the molecular replacement were generated for each of the

structure features generated by data mining. Various metrics

of the results were correlated with results from the least-

squares structure alignment between each of the features and

the myoglobin/insulin ®nal coordinates.

3. Results

3.1. Data selection

The data selection produces 2239 structures from the

original set of 11 208 proteins within the Protein Data Bank.

The rejection statistics in Table 1 result from the rejection

criteria described.

The splitting of the 2239 proteins into fragments of structure

using the two-dimensional ®nite difference matrix of C�

distances results in a total of 3331 fragments of protein.

3.2. Alignment

The program CAMINE was provided with the list of protein

fragments and it carried out the simultaneous pairwise align-

ment of all member of the list of proteins. The calculation

using the list of 3331 fragments took 148 h on a Pentium II 450

PC running Red Hat Linux and required 5.5 million pairwise

structural alignments. The program provides a sequence

alignment based on the structure alignment, a transformation

matrix that orientates one of a fragment pair to the other, an

Table 1
The rejection criteria de®nes a summary of each rejection method
described in the text.

The limit column in the table de®nes the numerical limit of the rejection where
this applies, or text keyword (as de®ned by IUPAC rules) recognized from the
PDB ®le.

Rejection criterion Limit No. rejected

NMR structures $NMR/MOL² 31
Date limit After 1983 152
DNA + RNA structures $DNA/$RNA³ 96
Too few residues <10 residues 352
Too many C� >0.25 � Natom 31
UNK sequence entries 4
Bad Ramachandran >10% OUB§ 1
Resolution limit/No info >2.5/No data} 3792
Homology rejection >80% 4510

² The keyword $NMR should be declared within a PDB ®le that is solved by NMR, but
in most cases this is not present. Therefore, a NMR structure is also detected by the
presence of the MOL and ENDMOL cards used to delimit the multiple solutions within
such ®les. ³ The $DNA and $RNA should be used in a PDB ®le to indicate that the
structure only contains nucleic acid residues. § OUB: out of bounds. } A PDB ®le is
rejected if it contains no resolution information.



RMSD, length of alignment and a set of translated atom

coordinates.

The longest aligned fragment pair was 690 residues and the

shortest aligned fragment pair was 20 residues, the minimum

recorded alignment length. With the minimum recorded

alignment length it is found that all except 142 proteins

aligned with some other protein in this analysis. The number

of unique fragments is zero for ongoing analysis. The distri-

bution of alignment lengths on a loge scale indicates that only

alignments below about 70 residues are signi®cant (Old®eld,

in preparation). Thus, data mining will not ®nd signi®cant

common features longer than 70 residues.

One problem to contend with is that the helix in a protein

represents the most compact method of packing a sequential

list of residues, while a strand represents the most inef®cient

method of packing a sequential set of residues. This means

that �-sheets contain relatively few residues to form a signif-

icant fold pattern, while the packing of just two helices consists

of 20±30 residues. Hence, the recognition of �-strand/sheet

information within the protein alignment is dif®cult as

signi®cant �-strand information lies within the noise of the

helical alignment.

The pairwise alignment of the 3331 protein fragments

generates a matrix of aligned metrics, where each element is

the number of residues that align between a pair of proteins.

This matrix is mostly complete, with non-zero (large) values

on the leading diagonal. Elements for pairs of proteins that

have no alignment solution contain zero.

3.3. Common feature analysis

Each database of aligned fragments is read by the program

ANAFRAG and fold analysis carried out by in¯ection detec-

tion. A total of 358 features were generated with a distribution

of length as shown in Fig. 3. This graph shows that the most

common feature size occurs with a length of 28 residues and

subpeaks occur at 36 and 45 residues. The signi®cance of these

peaks in this graph results from two-, three- and four-helix

packing, where the average length of a helix is about 12

residues. It should be noted that while helical structure is

highly conserved and �-strand structure is very variable, the

packing of helices is very variable and the packing of �-strands

is highly conserved. Therefore, most of the features of struc-

ture result from various packing occurrences of helices. Some

example folds are shown in Fig. 4(a)±4(d), although most of

the smaller features consist of two/three helices with different

packing angles.

3.4. Molecular replacement

To test whether a small feature of protein structure could be

used as a molecular-replacement model, a single model

feature was used. A 76-residue feature generated by this

analysis was used to test the principle of using parts of a

structure for MR. The feature is a four-helix packing of the

helices E, F, G and H from myoglobin and is shown in Fig. 5 as

a multiple overlaid C� trace. The MR was carried out with just

C� atoms and a polyalanine structure using (i) an ensemble of

overlaid structures, (ii) an average structure of the ensemble

and (iii) a single feature element of the ensemble. A summary

of the results of this analysis is shown in Table 2.
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Figure 3
The distribution of feature sizes generated by mining the protein
fragments.

Figure 4
Four example features generated by mining the protein structure
coordinates. Each ®gure consists of multiple superposed C� traces from
a number of proteins that contain the same feature.
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The myoglobin data has two molecules in the asymmetric

unit and thus a total of 306 amino acids, as well as two

porphyrin ligands. Two solutions were determined by mole-

cular replacement and found to overlay myoglobin with a

correlation coef®cient of 48% for both molecules in the

asymmetric unit when using a polyalanine ensemble. This

peak was 3% larger than the mean of the remaining 18 solu-

tions. It was interesting to note that the correct solution was

found when just using the C� ensemble atoms of the feature,

though the solution was not so clear at 2.5% above noise.

From this analysis, it was observed that the best signal could be

obtained using the ensemble of alanine coordinates, though an

ensemble of C� traces was almost as useful.

A C-shell script was written to use each feature as a model

to search myoglobin and insulin data with AMoRe. The results

from the MR (correlation coef®cient) were correlated with the

structural alignment of each of the 358 feature fragments with

myoglobin and insulin. Figs. 6(a) and 6(b) show these align-

ment results plotted against the product of maximum corre-

lation coef®cient and feature size.

The largest alignment between the fragments and

myoglobin is that from the four-helix packing found about the

haem group. This does not give the largest correlation co-

ef®cient, even when scaled by the size of this feature, and in

fact there are a number of non-aligned fragments that result in

Figure 5
The myoglobin core feature (helices E, F, G, H) shown as multiple
superposed C� coordinates.

Table 2
Molecular replacement.

Search model data Noise (CC) (%) Solution (CC) (%)

76 alanine residues of myoglobin 33.9 39.0
76 C� atoms of myoglobin 21.0 No solution
C� trace, ensemble 32.4 34.9
C� trace, average structure 22.0 No solution
C� trace, representative structure 22.7 No solution
Alanine, ensemble 45.3 48.1
Alanine, average structure 36.6 39.4
Alanine, representative structure 36.3 No solution

Figure 6
Graphs of alignment length between each of the feature fragments and
the proteins myoglobin (a) and insulin (b) plotted as a function of the
product of MR correlation coef®cient and fragment size. The disconti-
nuity observed between the alignment length of zero and 20 is the result
of recording alignment lengths only above 20 residues. Hence, if a
fragment aligns with a length of less than 20 residues then it lies at y = 0.
The fragments longer than 80 residues (see graph in Fig. 3) are not shown
for clarity, but have an x ordinate that is less than 30.



good correlation coef®cients. From this analysis only two

results from a cluster of seven, with scaled correlation coef®-

cients greater than 3000, are correct solutions within the

myoglobin example. The insulin example has ®ve results

spread out to higher correlation values and the two largest are

correct solutions, but both from the same feature. It should be

noted that owing to the method of generation some feature

fragments are small parts (subsets) of other fragments that

occur with higher frequency. When phasing by MR is dif®cult,

analysis of ten solutions would be considered a trivial

problem; however, automated methods using multiple solu-

tions at different sites in the molecule require more conclusive

results. It is felt that these correlations do not represent

conclusive results, but do suggest that more sensitive MR

methods could be productive.

4. Conclusions

The aim of this work was to generate a series of structural

motifs by looking for common folds within a non-degenerate

set of proteins and use these with molecular replacement.

Although the generation of the features was successful and is

being used in a number of lines of research, the MR results

have only been partially successful with the myoglobin and

insulin data. In particular, it can be seen that the size of the

features generated by data mining is restricted to small values.

The PDB data is currently being reduced again with a number

of algorithmic limitations adjusted to produce a better feature

set. Statistical analysis of the results indicates that the recur-

rent features will still be limited in size, less than 70 residues.

The algorithm within AMoRe is probably not sensitive enough

to produce MR solutions with moderate and large proteins

using features less than 70 residues in length. These examples

are probably at the limit of sensitivity of this technique and

worked only because the packing of the EFGH helices was

present as a feature in myoglobin and because insulin is small.

As more powerful MR methods become available that are

more sensitive, this methodology described may yield useful

results for small proteins.

5. Program availability

The programs SQUID and PDBSELECT are available to

academic institutes from http://www.ysbl.york.ac.uk/~old®eld.

The program PDBSELECT available from this site has a

rather slow sequence-alignment algorithm based on dynamic

programming; a later version using very high-thoroughput

sequence alignment is not available.

The programs CAMINE and ANAFRAG are not available,

although publications on the methods used are in preparation.

I would like to thank Eleanor Dodson for help with the

molecular replacement and Leo Caves for constructive

discussions on structure alignment and data analysis. This

work was entirely funded by Accelrys Inc.
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